More precise detection of wafer/chip defects
Automated classification of defect types
Stronger pattern defect detection capabilities
Significantly improved detection efficiency
Reduced human intervention and subjective errors
Enhancing defect detection for light guide plates and diffusion boards
Accurate detection of fine circuit pattern defects
Improved detection rate for color filter and CF defects
Enhancing defect detection for complex metal/mechanical components
Handling diverse metal materials and surface characteristics
Improving defect detection for critical functional components
Shortening programming time for complex product inspections
Enhancing high-speed production line inspection adaptability
Real-time problem identification and resolution
Reducing human errors
Reducing customer complaints and increasing ROI
Lowering production costs
More precise detection of food surface defects
Accurate identification of foreign objects within food
Automated food shape recognition and grading
Rapid inspection of food packaging integrity
Improved detection of subtle surface defects on medical devices
Accurate inspection of medical packaging integrity
Realization of medical label character recognition
Improved inspection efficiency and reduced human risks
Improved detection accuracy
Flexible defect definition and classification
Highly adaptive optimization of inspection
Automated, unattended operation
Improved detection of small defects on printed products
Accurate text/code recognition Labels/printed products often feature text, barcodes, and other encoded information.
Efficient inspection of complex patterns and image defects
Significantly improved inspection efficiency
Labels/Printing
Solutions:
Cognex In-Sight vision systems with deep learning OCR solutions can confirm that lids and containers match each other and accurately reflect the contents of the package, as well as confirm that labels comply with internal procedures and quality standards enforced by regulatory agencies. Cognex technology ensures high-speed reading and decoding of barcodes and text in the most demanding environments.
- Two bottle sizes can be used on one machine: Supports two vial bottle capacities (10ml and 20ml) at the same time, no need to change tooling when changing lines, operators can get started directly, and easily switch between different bottle sizes.
- Tray separation and loading + automatic vial loading: Apacer's exclusive design of Tray automatic separation mechanism can automatically separate the Tray trays that were originally stacked together to save space, and place them independently into the production line; combined with the bottle pushing and vacuum bottle picking mechanism, it can be used at once Dozens of vial bottles are automatically placed in the tray, which greatly improves the overall packaging efficiency and productivity.
- Highly customized: Designed for customers' existing products, production lines and tray bottles, saving transformation and transformation costs.
- AOI label optical inspection station: Integrate existing front-end and back-end equipment to detect whether the bottle label is completely attached, whether the label position is tilted, and whether the batch number is printed correctly; once a defective product is detected, the mechanism will automatically exclude it to avoid the defective product from entering the next station.
- Customized database: Reserve the flexibility of upgrading ESG IoT smart devices.
Optical Character Recognition (OCR) and Optical Character Verification (OCV) capabilities read and confirm printed data, verifying the quality of assorted elements required to be imprinted, such as logos, dates/batch numbers, and graphics. Comprehensively utilized in Cognex's versatile In-Sight Systems, these code reading tools ensure precise decoding accuracy.
Cognex Vision Systems paired with OCR technology can detect barcodes' existence and verify letter-number sequences, catering to stringent OCR demands inclusive of laser-etched marks or DPM texts. Cognex Deep Learning Solutions secure precise reading and authentication of barcodes. Moreover, deep learning offers OCR and character verification (OCV) functionalities that encode distorted, slanted, and poorly etched letters, given a pretrained multidirectional font database. No requirement exists for designing extra programs or font training since it readily identifies most textual content.
Cognex In-Sight 2800 provides user-friendly and cost-effective solutions for tobacco manufacturers conducting crucial inspections, featuring Edge, Contrast, Color, Pixel Count tools to pinpoint fiscal stamp attributes and relay pass/fail results to programmable logic controllers (PLC). Integrated lighting facilitates necessary contrast for luminous and low-contrast features, ensuring precise assessment of test subjects inline at production rates. Avoidance of rework, exorbitantly priced waste, and unnecessary returns ensues. Seamless setup and maintenance integrate In-Sight Explorer Software and EasyBuilder configuration environments.
By using the In-Sight vision system, food and beverage manufacturers can ensure that labels are placed in the correct position on the product and avoid product recalls due to quality issues or damage to brand reputation. Similarly, automated inspection can identify incorrect labels before they cause further problems along the supply chain due to misaligned labels. Label alignment inspection can be used in conjunction with optical character recognition (OCR) and other In-Sight vision tools to ensure overall label readability and compliance.
Cognex Deep Learning can read printed barcodes on difficult backgrounds. With a pre-trained font library, the deep learning OCR tool is easy to set up and deploy. It can then be trained on a small set of images of text printed on a variety of backgrounds, and it learns to identify the text while ignoring the background. This is even the case when the text appears on new backgrounds that were not in the original training set. When text appears on a new background, the OCR tool does not need to be retrained, which keeps the production line running without interruption or loss of read accuracy.
Cognex Deep Learning can read printed OCR codes on flexible plastic film, which are not only difficult to read, but the background can also vary due to many different cut parts or chicken. The deep learning OCR tool comes with a pre-trained font library, making it easy to set up and deploy. The OCR tool is trained on a small set of images of text that is skewed, angled, and distorted. After that, it can find and read this type of text on flexible food packaging, regardless of the product underneath the packaging.
Traceability solutions ensure full compliance with food safety and traceability regulations by capturing images of codes at each scanning point and storing the decoded data in a central database. Cognex barcode readers can reliably read 1D and 2D bar code images with a 99.9% read rate, regardless of code quality or orientation. Image-based readers offer the speed and accuracy needed to ensure that all shapes and sizes of packages are properly sorted, picked, stored or shipped, and easily identified and located in the event of a product recall. In-Sight vision systems use AI-based OCR tools to read alphanumeric date/lot codes and store the information in a central database that can track and trace products throughout the supply chain.
Matrox MIL10 SureDotOCR™ character recognition tool is specially developed for challenging dot matrix text printed by inkjet and dot printers. It can be calibrated according to the specified dot size, and can be used for text distortion, uneven background and different light conditions. Recognition.
The In-Sight vision system, combined with feature extraction technology, uses lighting and software algorithms to create high-contrast images that enhance the three-dimensional features of components. It can capture errors and defects such as torn, cracked or deformed labels. Monochrome and color models can identify color errors and inspect the consistency and quality of labels in terms of size, shape, color and material. This quality control measure can reduce errors, help meet label quality standards and ensure customer satisfaction.
By using the Segmentation technology of SolVision AI image platform, AI models are trained for the image information of the name, concentration, and capacity on the IV bag body. The image features are learned to quickly identify and classify various types of infusion products.
- Full Chinese operation interface
- Quick adjustment page for product fine-tuning
- Statistical functions (total inspected/qualified/defective quantities)
- Defective image storage and classification
- Ability to adjust settings during inspection
- Complete rejection mechanism planning (low/medium/high speed, contact/non-contact type)
- Equipment can process up to 1200 pcs/minute at maximum speed
The software can quickly locate and read solid text in images, and can tolerate a certain degree of tilt and contrast changes. It is flexible enough to overcome the problem of character building and background blur. On the other hand, if the text is clear enough, String reader will perform the detection, and if the text is accidentally covered, Matrox DA can also automatically switch to the existence/non-existence inspection mode, which can effectively respond to changes in the production line.
By using the Segmentation technology of SolVision AI image platform, AI models are trained with image samples of bottle cap text and barcodes, and optical character recognition (OCR) is performed. This can accurately identify product information on the outer packaging in the high-speed beverage production line. In addition to detecting products with poor printing, it also greatly enhances the efficiency of traceability management and record retention on the production line.
- Full Chinese operation interface
- Quick adjustment page for product fine-tuning
- Statistical functions (total inspected/qualified/defective quantities)
- Defective image storage and classification
- Ability to adjust settings during inspection
- Complete rejection mechanism planning (low/medium/high speed, contact/non-contact type)
- Equipment can process up to 1200 pcs/minute at maximum speed
The In-Sight vision system, combined with OCRMax technology, can detect the presence or absence of dates and batch codes, and verify the correctness of their alphanumeric chains. For demanding OCR applications, including DPM text that is laser marked, dot peened or chemically etched, Cognex AI OCR tools ensure accurate reading and verification of barcodes. These tools can use OCR and character verification (OCV) to decode deformed, skewed and poorly etched characters. A pre-trained omnidirectional font library can recognize most text without the need to design additional programs or font training.
Cognex's In-Sight 7800 Series Visual Systems boast exceptional accuracy in reading tax stamps' OCR codes, helping tobacco industry manufacturers comply with stringent regulations concerning cigarette taxes. Leveraging the PatMax Object Location Tool, In-Sight 7905 searches for and positions patterns on fiscals stamps, followed by Exposure Distribution Graph and OCR tools to locate characters and decode OCR codes. Operating flawlessly at minimal distances, In-Sight 7905 extracts and examines high-resolution, high-contrast images unaffected by deformation directly from high-speed printers.
Epic Systems, a major system integration company, has integrated the Matrox MIL vision library to develop an OCR machine vision system that has been deployed in the manufacturing site of a major food manufacturer. This vision system will instantly identify whether the expiration date on the bottle is correct, and instantly remove the incorrect bottles to prevent defective products from entering the market.
In-Sight vision systems can detect the presence or absence of allergen labels and ensure that the labels are printed clearly. Pattern matching technology can find allergen labels on packaging, bottles, and other items and verify that they are correct, in order to protect customer safety and reduce the chance of product recalls.
- Possible to examine heat seal tags in cylindrical formats
- Detectable defects: Print errors, incorrect positioning, dirtiness, warping, pollution, overflow, peeling off
- Cloud-based machine management powered by Microsoft Azure, employed for AI model training and retraining